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Structure and Forces in Liquid 
Metals: Especially Hydrogen 
U. DE ANGELlSt 
lnstituto di Fisice dell' Universita * e Osservatorio Astronomico. Napoli. Italy 

and N. H .  MARCH 
Department of Physics, The Blackett Laboratory. Imperial College, London SW7 2BZ. 
England 

(Receiiied August 31, 1976) 

Motivated by the work of Corless and March on the interaction energy of an assembly .d 
N protons in a high density electron gas, a systematic procedure based on the Born-Green-Yvon 
hierarchy is developed for deriving higher order correlation functions. In particular the three- 
body correlation function is altered from the Kirkwood form by multiplication by a factor 
exp(f), where,f is expressed entirely in terms of the liquid structure factor S ( K ) .  

The consequences of this approximation to the three-body correlations are investigated by 
working out the pressure dependence of the structure factor S ( K ) .  

The theory provides a systematic iterative approach to derive a pair potcntial from measured 
structure data. In lowest order of the iteration, the results of Born-Green, Percus-Yevick and 
hypernetted chain theory are regained. In the next order however, these theories are transcended. 
We stress that the theory developed here is specific to liquid metals: the decoupling employed 
should not be used for insulating Ilquids. 

1 INTRODUCTION 

Much current interest in liquid metals centres round the relation between 
the electronic structure on the one hand and the ionic correlations on the 
other. Earlier work by Johnson and March'** demonstrated that the ion-ion 
interaction potential in liquid metals had the general form to be expected 
from electron theory. But because of the lack of experimental structure data 
over a wide range of momentum transfer, plus the limitations of the approxi- 
mate integral equations employed, progress in extracting the force laws 
has been slow. 

t The contribution of one of us (U. de A.) to this work was made during an extended visit 
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to Imperial College. 
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226 U.  DE ANGELIS AND N. H.  MARCH 

Recently a study has been made by de Angelis and Forlani3 of the structure 
of liquid metal hydrogen. This study, based essentially on a pair interaction 
of the form given by Corless and March,' has prompted us to go back to 
examine more carefully the implications of their work for the interaction 
energy of N protons in a high density electron gas. 

We recognize, of course, that a proton, without any core electrons to 
weaken the conduction electron scattering, is a strong perturbation in a 
bath of electrons corresponding to normal liquid metal densities. But the 
interest in hydrogen is at very high pressures; for example the cold solid 
only becomes metallic at a pressure of the order of 1 megabar. 

As we shall discuss below, our interest in liquid metal hydrogen has led 
us to a systematic procedure for discussing both pair and higher order 
correlation functions in simple liquid metals. 

2 PAIR FUNCTION FOR HYDROGEN PLASMA 

We note first that for a fixed proton configuration {R} = {R,, . . . . R,}, 
solution of the Schrodinger equation would give the total interaction 
energy E ({R}) for the protons, within the framework of the Born- 
Oppenheimer approximation. From this the canonical pair function 
g(R,R,) = g(R,,) is to be obtained in the usual way as 

where V is the volume of the liquid. 

p(r{R}) as a superposition of screened ion densities 0: 
The linear theory of Corless and M a r ~ h ~ . ~  yields the electron density 

p(r{R}) = 1 4 r  - Ri) (2.2) 

where 0 depends only on the electron density in the Fermi bath i.e. it is a 
property of the screening of one proton in the electron assembly, and inde- 
pendent of local environment. 

More generally, a form like Eq. (2.2) seems very plausible for. say, liquid 
metal Li. For Perrin, Taylor and March6 have shown that a Korringa- 
Kohn-Rostoker band calculation leads to a form (2.2), the Li' ions 
admittedly being on a lattice. with c7 correctly generated from a single Li' 
ion screened by the Fermi gas, the latter having been discussed by Dagens, 
Rasolt and Taylor.' 

Thus the form (2.2) will be taken as the zeroth order starting point of the 
present theory. 
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STRUCTURE A N D  FORCES IN LIQUID METALS 227 

2.1 Electrostatic potential 

In the model based on Eq. (2.2). the total electrostatic potential at r is 
evidently given by 

e 
wr* {R})  = z + potential of p(r) 

I 

where +,(r) is the screened potential round one ion. 
For a proton sitting at R , .  we get the potential acting on it by taking 

the limit r + R , ,  but removing as usual the (infinite) potential of the proton's 
own charge. Then the result is found to be 

2.2 

According to the Hellmann-Feynman theorem, the force on a proton is 
given by the electric field in which the proton finds itself, times the (unit) 
charge of the proton. Hence the force acting on a proton at R ,  when the 
remaining protons are at R 2 ,  . . . . R, is evidently given by 

Force on proton at R ,  

a 
F,  = - - @ ( R l . .  . . , RN). 

dR , 
But we also have. in tcrms of the energy of interaction E that 

F, = - 
d 

2R 
-- E(R1. .  . . 

Thus we can write 

E(R, .  . . . , RN) = W R , . .  . . , RN) + F(R,,  . . . . RN) (2.7) 

with F some as yet unknown function of the N - 1 variables shown. 

2.3 n-particle correlation functions 

The n-particle correlation function can be written in terms of a potential 
of mean force W, as8 

g.(R1. . . . . R,) = exp{ -/lW,(R,. . . . . R,)} (2.8) 
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228 U.  DE ANGELIS A N D  N .  H .  MARCH 

where wl is defined as:  

Integrating this equation we evidently obtain 

+ G(R2. . . . . Rn) (2.10) 

where G is the 'constant' of the R ,  integration. Using eq. (2.7) we find 

" dR,, ,.. . . , dRN c -  /JOllRl)e-- B F ( R z .  .... R 

(2.1 1)  

i... I PW,(R,, .... R,) = -In 

+ G ( R 2 , .  . . . R,). 

Substituting from eq. (2.4) into (2.1 1 )  we find 

x exp[ -/?F(R,. . . . . R,)JdR,+ ,, . . . , dR, 

+ G(R2.. . . . R,) (2.12) 

In particular 

PW(RIZ)  = /?4s(R12) + BjI(R, )  + function(R,. R,) + G(R,). (2.14) 

Repeating the entire argument for the proton at R 2  we obtain 
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STRUCTURE AND FORCES IN LIQUID METALS 229 

For a fluid, the pair correlation function depends only on R I 2  and therefore 

(2.16) 
/3f(R,) + function(R,, R,) + G(R2) 

= /l'(R,) + function(R,, R , )  + G ( R , )  = A ( R l 2 )  
and thus from eqs. (2.16), (2.15) and (2.9) we can write 

(2.17) 

While, however, in principle, the above argument will allow the calculation 
of A from 

g ( ~  I *) = -B&(RizJe - ~ R I  zt. 

a) The localized density a(r) 
b) The screened potential 

in practice this does not seem presently feasible. Thus, we use eq. (2.17), 
plus the work of Johnson and March,'.' to motivate the calculation of A 
by making the zeroth order approximation 

(2.18) 

(2.19) 

A direct generalization to n = 3 evidently yields, in zeroth order 

W(Rl,  R 2 ,  R3) = ~ s ( ~ I Z )  + 4 ~ ( ~ 1 3 )  + $s(R23) 

d 3 ' ( R I ?  R23  R3)  = g(R12)9(R13)dR23) 

(2.20) 

(2.21) 

and hence the three-particle correlation function takes the Kirkwood form 

Having thus motivated the zeroth order results (2.18) and (2.21) by appeal 
to the model of screened ions plus the work of Johnson and the 
rest of the paper now makes use of the usual .Born-Green-Yvon (BGY) 
hierarchy* to determine systematically the corrections to these zeroth order 
results. We start out from the exact relation between g(R,,), g"'(R1, R , ,  R,)  
and the pair potential +(r);  the so-called force equation. 

Though the present approach has been motivated by considering liquid 
metal hydrogen, the iterative procedure developed below is proposed as a 
theory of structure for simple liquid metals. 

3 FORCE EQUATION AND PAIR POTENTIAL FROM STRUCTURE 
DATA 

The force equation reads 
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230 U .  D E  ANGELIS A N D  N. H.  MARCH 

where po is the number density N / V .  lfwe insert the Kirkwood approximation 
(2.21) into eq. (3.1). then we obtain 

This equation is equivalent to the Born-Green approximation in liquid 
structure theory i f  used as it stands. However, since from eq. (2.18) 4 = W in 
zeroth order, we can determine an improved pair potential from measured 
structure data by rewriting eq. (3.2) as 

since g ( R ,  3 )  = exp( - /?W(R, 3)). Introducing the structure factor S ( K )  
through 

S ( K )  = 1 + po b ( r )  - l]exp(iK. r)dr (3.4) I 
eq. (3.3) yields the first-order result for the pair potential '(R, 2): 

I t  is of interest to note that, in the same spirit as the zeroth order model 
neglects the three-body term in the force equation. in the defining equation 
for the direct correlation function c(r),  namely 

g ( r )  - 1 = h(r)  = c(r) + po h(r')c(r' - r)dr' (3.6) 

we can take the zeroth order approximation as h = c. Then replacing c by h 
in the integral term in the next approximation and treating h - c as small 
leads back to Eq. (3.4) from both the Percus-Yevick and the hypernetted 
chain equations. 

I 

4 IMPROVED FORM OF THREE-PARTICLE CORRELATION 
F U N CTIO N 

Clearly, if we inserted Eq. (3.5) back into the integral Eq. (3.1), we should be 
solving the Born-Green equation by the iterative method which was used 
by Johnson and March.' But to proceed systematically, we must consistently 
refine g ( R , 2 ,  R23, R 3 ] )  as well as 4 and this we can do  by means of the next 
member of the BGY hierarchy. 
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STRUCTURE A N D  FORCES IN LIQUID METALS 23 1 

However, it will be helpful at this stage to consider the more general 
decoupling that we propose here for liquid metals. To do this, we introduce 
the unsymmetrical correlation function g'"' defined by Hill8 as 

Then a general result for fluids' is that 

g(,)(RI,. . . , R,) = 9'"- ')(Rl, . . . , R,- l)S"'I(R1,. . . , R,) 

The unsymmetrical distribution functions enter the hierarchy through 

(4.2) 

- k , T V ,  lng(n)(Rl , . . . ,R, , )  

i = 2  J 

Therefore the problem is to decouple the unsymmetrical correlation function 
g'"](R,, . . . , R,), 

From Eq. (4.2) we have 

and since we are taking the ion at R, as the unsymmetrical one then we must 
take 

O(Rl, . . . q  Rn) = C 4LRn - Ri) + S(Rn) (4.5) 
i f n  

with 

Then we get for cf" the result 

x 5 . , . 5 nen- e-P9*(Rn.t) dR,,+ . . . , dR, 

(4.7) 

which clearly satisfies the normalization condition. Apart from normalization 
coefficients we therefore take 

(4.8) R,) = e - @ 9 s ( R m .  I ) ~ - P @ A R ~ ,  2 ) .  . . , , - BOAR., n - I )  g["'(R I ,  . . . , 
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232 U .  DE ANGELIS A N D  N .  H.  MARCH 

The consequences of all this for the decoupling of the hierarchy for the 
symmetrical n-particle correlation function g'") is discussed in the Appendix. 

Here our immediate aim is to get the next order approximation for g(3) 
from the hierarchy and we do this by inserting the lowest order decoupling 
for gt4] in Eq. (4.3). Thus we get 

-kgTVI In g(3'(R1. R2.  R3) = v1C6,(Rl2) + 4.,(R13)l 

+ po 4,\(R I 4)e - ~ # S ( & I ) ~ - P # S ( R ~ I ~ , -  86dR43) dR4. 

(4.9) 

To lowest order, we can replace each $,(R, , )  in the integral by W(R, , )  and 
then g(R,4)VlW(R,4) = -(l//l)Vl(g(R14) - 1) so we have 

-k,TV, In dW1.  R2.  R3) = v,C4,(R12) + A ( R 1 3 ) l  

- kBTPOVI Ih(R14)g(R2*)g(R34)dR4 

(4.10) 

that IS 

In d3YRl .  R 2 .  R3) = - P4,(R12)  - / l 4 d R I 3 )  - P4,(R2J 

+ Po J M R , , ) s c R ~ ~ ) s ( R ~ * ) ~ R ,  (4.1 1)  

where 4,(R23) has been added as a "constant" of integration for obvious 
symmetry reasons. For +>(Ri,)  in Eq. (4.12) we must now use the first order 
result for the pair potential. namely Eq. (3.4). which we write as 

(4.12) PddR,,) = B W R , , )  + A+(R,,) 
with 

[ S ( K )  - l]2e'K'R8~ dK. (4.13) 

Then we obtain 
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STRUCTURE AND FORCES IN LIQUID METALS 233 

This can be put into a somewhat simpler form if we do not insert the term 
- 1 in g ( R I 4 )  in Eq. (4.1 1 ) :  in fact in this case the last exponential term in 
g(3' is the product of three g's. which we can express in terms of the total 
correlation function h as 

+ Jh(Ri4)h(R24)dR4 + Ih(R14)h(R34)dR4 

+ / h ( R  24)h(R 34)dR4 * (4.15) 

Here we have dropped all the terms not involving R , , .  R I 3 .  R , ,  as they 
have tocancel togive thecorrect asymptotic behaviour O ~ ~ ' ~ ) ( R ~ , , R ~ ~ ,  R 2 3 ) .  
The last three terms in Eq. (4.16) give A#4R , ,). A#R 3), Ad(R23) respectively 
and the first term can also be written in terms of structure factors as 

P O  Ig(R14)s(R24)dR.34)dR4 = f ( R 1 3 .  '23) + + Ad(R13) 

+ Ad(R2.7) (4.16) 
with 

[S(lK + K'I )  - 1-Jp-iK.Ri3,-1~'.R23 (4.1 7) 

Ofcourse,fcan be written in terms of any two of the vectors R , , ,  R , , ,  R,, ,  
say R, R'. Equation (4.17) can be obtained for n = 3 from the general expres- 
sion (A.8) in the Appendix but we have preferred to derive it directly here. 
Thus the A& in Eq. (4.14) cancel and we are left with a basic result for the 
3-particle correlation function in liquid metals 

g(3YR1.  R , .  R 3 )  = g(R,,)g(RI3)s(Rz3)expCf(R. WI. (4.18) 

4.1 

Our primary objective is to pursue consistently the second order theory for 
the pair potential. from measured structure data. To do so we write 

Second-order correction to pair potential from structure data 

g'3'(R1. R 2 .  R3)  = + A (4.19) 

where 91" is the Kirkwood result (2.21). Then we find from Eq. (4.18) 
A = gk?)[ef(R.") - 13. (4.20) 
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234 U. D E  ANGELIS A N D  N .  H. MARCH 

Evidently we must now insert the first-order results for both C#J and g(3) 
in the force equation. when we find 

V I 4 ( R I 2 )  = V l W R 1 2 )  - p 0  ~ g ( R 2 3 ) g ( R 3 1 ) V l W ( R l . ~ W R 3  

Using the identity 

we have 

+ P O ~ E T  Ih(Ri3)g(R*3)ef'""V 1 f(RR'WR3 

- P O  Jg(R23)dR3I lv I A&R I 3)dR3. (4.24) 

Equation (4.24) represents a consistent second-order theory for the pair 
interaction $(R, 2)  in terms of measured structural data. If we now argue 
that f and A 4  are slowly varying functions of R, ,  which may be reasonable 
when we remember they were both zero in lowest order, and furthermore 
that f is small enough to allow the expansion of the exponential in lowest 
order only. then we can set to zero the last two terms. In this approximation, 
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STRUCTURE AND FORCES IN LIQUID METALS 235 

we can carry out the integration immediately to obtain the approximate 
result 

&R 1 2 )  = W(R 12)  + k ,  TAd4R 1 2 )  

- P O k ,  J h ( R ,  3)dR23)f(R I 3  * R23)dR3 (4.25) 

for the second order correction to the pair potential. Now A$ is already 
written in Eq. (3.5) in terms of the measured structure factor. If we use 
convolution properties to rewrite the last term in Eq. (4.25) in terms of 
structure factors we obtain 

4 ( R I 2 )  = W(RI2) + k,7 J [ S ( K )  - I]2eiK'R1z dK 
8n Po 

2 iK'.RI> x S(IK + K' I )  - 11 e 

- JL I I d K  dK' dK"[S(K) - I ]  [ S ( K ' )  - I ]  
( 8 n 3 ~ 0 ) 3  

x [S(lK + K'I) - l][S(K") - 13 

x [S(IK + K' + K"I) - l]eiK'.R1> (4.26) 

Thus the main result of this argument is Eq. (4.18) for the three-body 
correlation function, given the measured pair function. An important 
consequence of this form of g'" is the result (4.24) for the second-order pair 
potential. The further approximation to this potential embodied in Eq. (4.26) 
is valid if the slowly varying assumptions made in going from Eq. (4.24) 
to (4.25), plus the requirement that f is small, are appropriate. In  general, 
these assumptions should be checked by solving Eq. (4.24). 

5 PRESSURE DEPENDENCE OF STRUCTURE FACTOR: 
A TEST OF g(3) 

Whereas pair correlation functions can be obtained to a degree of accuracy 
from scattering experiments, there is no similar practical approach as yet 
for measuring the triplet function g'3' essentially because the cross-sections 
for scattering of radiation are so small. 

It has been shown h o w e ~ e r ~ * ' ~  that g'3' can be related to the isothermal 
pressure derivative of the structure factor, which is a measurable quantity. 
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236 U. DE ANGELIS A N D  N. H.  MARCH 

In particular, by focussing on the difference between 9"' and the super- 
position value, namely 

(5.1) H(r, s) = g V .  s) - g(r)s(s)g(t) 
Egelstaff er a/." could show that the quantity 

is directly related to the isothermal pressure derivative of S ( Q )  and other 
measurable quantities involving S(Q),  including its long wavelength limit 
which is, essentially, the isothermal compressibility. We wish here to invert 
the problem: by considering R(Q) as a known experimental quantity we 
examine the prediction of the present theory of gI3' in section 4 above. 

We shall work only to first order in f in the exponential in our basic result 
(4.18). Then we can write 

9"' = gf '  + &"f(R. R') = g(K3) - H(R. R') (5.3) 

where 

= 9(R I 2 M R  I 3 ) 9 ( R 2 3 )  

is the zeroth order result. 
For notational convenience we write 

T ( K )  = S ( K )  - 1 

1 

( 8 x 3  p0 I, 
T(K. K') = -- [ S ( K ' )  - 1][S(IK + K'I)  - 13. (5.4) 

Then we have: 

If  we now set 

R ,  - R, = s. R, - R, = r. R2 - R3 = t 

we find 

H(r. s) = -g(r)g(s)g(f) dK dK'T(K)T(K. K')e-'K'me-""'. (5.6) II 
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STRUCTURE AND FORCES IN LIQUID METALS 237 

we obtain the result 

R(r) = - p o g ( r )  I I d K  dK'T(K)T(K. K')""''r 

(5.7) 

The last integral can be written as 

Ih(s)h(lr - Sl)e-=..  ds + h(s)e-iK'a ds + h(lr - sl)e-iK.8ds I I 
which, introducing the Fourier transform h ( K )  = h(r)e'K'r dr, of the total 
correlation function h, becomes 

dqh(q)h( Iq + KI)e-i(q+K)'r + h ( K )  + e- iK"h(K) 'I 8n3 

Using the relation (3.3) between h(K) and S ( K ) .  Eq. (5.7) takes the form 

n(r)  = - 8 n 3 p 0 g ( r )  dK dK' dqT(K)T(K. K')T(K. q)e-i(K'+q).re-x'r JI 
- g ( r )  I I d K  dK'T2(K)T(K. K')"'"'' 

- g ( r )  IJdK dK'T2(K)T(K. K')e-"' c K ' . r  (5 .8)  

Now we calculate the quantity 

R(Q) = po IH(r)e-iQ'r dr 

to obtain 

R(Q) = - 8n3p; dK dK' dqT(K)T(K, K')T(K. 9) JII 
/g(rp- i(K + K '  + q-Ql ' r  dr - p o  JJdK dK'T2(K)T(K, K') 
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238 U .  DE ANGELIS AND N.  H.  MARCH 

Since the integrals involving the pair function are 

lg(r)e- ip’r  dr = h(P) + ( 2 ~ ) ~ 6 ( P )  

the final result for R(Q) can be expressed in terms of structure factors alone as 

- 1 WQ) = - 7 ESQ) - 11 JdK[S(K) - 11’ 
877 P o  

x I[s(lQ + KI - 11 + [s(lQ - K I )  - 11) 

dK dK’G(K. K’) 
1 

(5.10) 

where : 

G(K. K‘) = [ S ( K )  - l][S(K’) - l][S(IK + K‘I)  - I ]  

x [S(K + K’ + q - Q) - 1)  

FZ(K. K’. Q) = [ S ( K )  - 11 {[S(IK - Q I  - 11 + [S(IK + K’ - Q I )  - 13) 
+ S(IQ + K’I) - l][SClQ - K - K’I) - 11. (5.1 1) 

These last two equations contain the prediction, in terms of measurable 
structure factors, for R(Q) from the theory of the triplet correlation function 
developed in this paper and it would be of considerable interest to test it in 
particular cases. 

6 CONCLUDING REMARKS AND S U M M A R Y  

It  will have occurred to the reader familiar with density expansion methods 
in the theory of imperfect gases that there is a formal similarity to the theory 
developed here. But that is where the similarity ceases. This is because the 
effective interionic potentials in liquid metals are defined in terms of a Fermi 
bath of a given density, and by asking for the energy difference between two 
ions in the Fermi sea at distance R ,  and at infinite distance. Secondly, it must 
be stressed that in all the iterative development, it is essential that the pair 
function is always written exactly, that is in terms of the potential of mean 
force W and not in terms of 4. Thus. the present philosophy is entirely the 
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same as that adopted by Johnson and March.' While we have not, of course, 
been able to discuss convergence of our procedure, as it is obviously im- 
possible at present to  get a useful expression for the nth term in the iteration, 
we anticipate from earlier results on the approximate integral equations 
that there should be reasonable convergence, but this will have to be checked 
out in particular cases as they arise. 

In summary, the main achievements of this paper are: 

1) To obtain expressions in first order for the pair potential 4(r )  and the 
triplet correlation function g'3' which are directly calculable from measured 
structure data on liquid metals. 

2) To evaluate the second order correction to +(r)  approximately in terms 
of the measured structure factor. 

3) To give a theory of the pressure dependence of the structure factor on 
the basis of the first-order theory of g'3'. We stress again that this is the route 
to test the present theory of g'3' against an experimentally measurable 
quantity. Understanding the present measurements of Egelstaff et al." on Rb 
is a simpler matter on our zeroth order and first order theories. If, as for high 
density hydrogen, we study the scaling with the Fermi wave number k,, 
then their ph'3 0: k ,  model, which they point out fits the pressure data, 
follows. This observation already supports the considerations of the present 
paper. 

However, we caution finally that the procedure used in this paper must not 
be used for insulating liquids such as argon. One must ask about the nature 
and range of the forces first, and after that develop an appropriate decoupling. 
In other words, one should not expect one universal decoupling approxi- 
mation to cover such widely different force laws as exist in liquid A1 or Pb 
on the one hand, and liquid argon on the other. 
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Appendix 

The purpose of this Appendix is to give the decoupling of the n-body cor- 
relation function to lowest order, from the BGY hierarchy, for liquid metals. 
From Eqs. (4.6) and (4.10) we have 

- k , T V ,  Ing'"'(R I . . . . ,R ,J  = r V 1 4 s ( R l i )  
n 

i = 2  

)dRH+I. ('4.1) - P d d R m + t . m  + po ~ V l ~ , s ~ R l . , l + l ~ e ~ P ~ s ~ R n + l ~ i '  ..... e 

In the integral. we use the lowest order result 

1 
JV14s(R,,+ I .  1)  = -- v 19(R,l+ I .  1)  ('4.2) e - B s ( R n +  1 . 1  

P 
and then we find 

- kBTV1 In g("'(R,, . . . . Rn) = x V 1 4 s ( R l i )  
n 

i = 2  

- P o k ,  T V I  jg(Rn+ 1 . 1  )* . . . * g(Rn+ 1 .  nwRn+ 1.  ( ~ . 3 )  

Integrating this equation yields 

In g'"'(R . . . , RJ = - P x 4 J R  ;) 
n 

i = 2  

(A.4) 
Repeating the argument for all V,. a = 2,.3, . . . , n. we conclude that the 
symmetrized result with the appropriate asymptotic behaviour is 

In g W I ,  . . . , Rn) = 1 [-/W5(Rij)] 
i+j  j 

+ Po Jg(Rn+ 1 . 1 ) -  . . . g(Rn + 1 .  nyRn + 1 '  ( ~ . 5 )  

Having used zeroth order approximations in the integral we should use 
first order /?+,, = PW + A 4  and then 

y'"'(R,, . . . , R,) = n [g(Ri,)e-A"'R'J'] 
if 1 

d R , , +  I .  1).  . . . - S(R,,+ I .  .)dRn 
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But  now the integral in the exponential can be written in terms of total 
correlation functions; in doing so all the exponents of AI$ cancel, just as was 
demonstrated to be the case for n = 3 i n  section 4. The final result is given by 

(A.7) 

Using convolution properties. this can be written in terms of structure 
factors as 

g'"(Rl.. . . * Rn) = fl g(Rij)exP{f(RnI* R,i,* ... * R n , , , -  1 ) )  (A.8) 
i+ j  

with 

1 
,f(R,,. I '  . . . 3 R,,.,,- 1 )  = - . . j d K , .  . . . , dK,,- I 

(8n3p0)"- 

x C W , )  - II...[S(K,,-,) - 11 
x [S(IKl + K, + . . .  + K n - l I ) -  13 

, - i K I . R m I e - i K ~ . R n ~  ..... e - i K m -  ~ ' R m , n - i .  (A.9) 

Equations (A.8) and (A.9) give the first-order results for the n-particle 
correlation function in a liquid metal in terms of measurable quantities, 
namely pair functions and structure factors. 
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